Fig. 2: Destruction of Virus-Infected Cells by NK Cells through
Antibody-Dependent Cellular Cytotoxicity (ADCC), Step-3

NK cells release pore-forming proteins called perforins and proteolytic enzymes called granzymes. Granzymes pass through the pores and activate the enzymes that lead to apoptosis, a programmed suicide of the infected cell. Apoptosis occurs when certain granzymes activate a group of protease enzymes called caspases that destroy the protein structural scaffolding of the cell, degrade the cell's nucleoprotein, and activate enzymes that degrade the cell's DNA. As a result, the infected cell breaks into membrane-bound fragments that are subsequently removed by phagocytes. If very large numbers of perforins are inserted into the plasma membrane of the infected cell, this can result in a weakening of the membrane and lead to cell lysis rather than apoptosis. An advantage to killing infected cells by apoptosis is that the cell's contents, including viable virus particles and mediators of inflammation, are not released as they are during cell lysis.


Illustration of Destruction of Virus-Infected Cells by NK Cells through Antibody-Dependent Cellular Cytotoxicity (ADCC), Step-3 .jpg by Gary E. Kaiser, Ph.D.
Professor of Microbiology, The Community College of Baltimore County, Catonsville Campus
This work is licensed under a Creative Commons Attribution 4.0 International License.
Based on a work at https://cwoer.ccbcmd.edu/science/microbiology/index_gos.html.

Creative Commons License

Last updated: August, 2019
Please send comments and inquiries to Dr. Gary Kaiser